Sur Une Des Liaisons Des Equations D’euler Lagrange A Celles De Hamilton Par Le Théorème De L. Noether

dc.contributor.authorTamba Of’rI’shii Gordien
dc.date.accessioned2025-11-26T19:03:00Z
dc.date.issued2024-10-16
dc.description.abstractIn this paper, we have traced some theories in physics which are described by the Lagrangian, by the associated Hamiltonian. Then, we made the connection between the Euler-Lagrange equations to those of Hamilton basing on a result we got : « the functions and are reciprocal diffeomorphisms », L represents the Lagrangian of a phenomen. On his the associated Hamiltonian and respectively the generalized coordinate of phenomenon and the conjugate momentum of the Lagrangian with respect to By proving that , which is a solution of the Euler-Lagrange equation, is also a solution of Hamilton equations therefore a first integral. We have joined Noether’s theorem which states that is a first integral where W is an infinitesimal symmetry of the Lagrangian.
dc.identifier.issn2958-8340 (Online)
dc.identifier.otherhttps://doi.org/10.47941/ijms.2294
dc.identifier.urihttps://indexedjournals.org/handle/123456789/922
dc.language.isoen
dc.publisherCari Journals
dc.subjectMétrique
dc.subjectProblèmes Variationnels
dc.subjectFonction Lisse
dc.subjectGéodésie
dc.subjectQuasi Périodicité
dc.titleSur Une Des Liaisons Des Equations D’euler Lagrange A Celles De Hamilton Par Le Théorème De L. Noether
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2294-Article Text-5773-6808-10-20241016.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: